

22-osios Lietuvos jaunųjų mokslininkų konferencijos "Mokslas – Lietuvos ateitis" teminė konferencija Proceedings of the 22th Conference for Junior Researchers "Science – Future of Lithuania"

APLINKOS APSAUGOS INŽINERIJA / ENVIRONMENTAL PROTECTION ENGINEERING

2019 m. kovo 20 d., Vilnius 20 March 2019, Vilnius, Lithuania ISSN 2029-7157 / eISSN 2029-7149 ISBN 978-609-476-211-6 / eISBN 978-609-476-209-3 https://doi.org/10.3846/aainz.2019.009

http://jmk.aainz.vgtu.lt

NO_X ORO TARŠAI MATUOTI SKIRTO ELEKTROCHEMINIO JUTIKLIO SU VOLFRAMO TRIOKSIDU TYRIMAI IR VERTINIMAS

Loreta Rezgytė¹, Alvydas Zagorskis², Milda Petrulevičienė³, Jurga Juodkazytė⁴, Benjaminas Šebeka⁵, Irena Savickaja⁶, Vidas Pakštas⁷, Arnas Naujokaitis⁸

^{1, 2}VGTU Aplinkos inžinerijos fakultetas, aplinkos apsaugos ir vandens inžinerijos katedra ^{3–8}Fizinių ir technologijos mokslų centras

El. paštas: ¹loreta.rezgyte@stud.vgtu.lt; ²alvydas.zagorskis@vgtu.lt; ³milda.petruleviciene@ftmc.lt

Anotacija. Elektrocheminių dujų jutiklių potencialas tikslinėms dujoms nustatyti vis labiau vertinamas ir tiriamas dėl savo kompaktiškumo, efektyvumo, mažų laiko ir finansinių sąnaudų. Eksperimentiniams tyrimams atlikti zolių-gelių metodu, naudojant skirtingus tirpiklius ir priedus, susintetintos skirtingos WO₃ plonasluoksnės dangos, kurios buvo padengtos ant stiklo substrato ir kaitinamos krosnyje esant 500 °C, 400 °C, 300 °C temperatūrai. Bandymu metu skleidžiančiosios elektrinės mikroskopijos (SEM) ir rentgeno spindulių difrakcijos metodais (XRD) įvertinta WO₃ plonasluoksnių dangų kristalinė ir morfologinė struktūra, poringumas ir nanokristalų dydis. Elektrocheminės WO₃ jutiklio savybės ištirtos atliekant ciklinės voltamperometrijos bandymus ir WO₃ elektrodo atviros grandinės potencialo atsaką į apšvietimą 0,5 M H₂SO₄ tirpale. Tyrimo metu nustatyta, kad zolių-gelių sintezės būdu susintetintų WO₃ plonasluoksnių dangų kristalinė ir morfologinė struktūra priklauso nuo zolių-gelių sintezėje naudojamų priedų bei kaitinimo temperatūros. Didžiausio kristališkumo dangos susidarė zolius-gelius kaitinant 500 °C. Atliekant PVA + H₂O + EtOH + oksalo r. būdu, kaitintų 500 °C, gautų plonasluoksnių dangų atsako į NOx dujas tyrimus, nustatyta, kad WO₃ reaguoja į azoto dujas.

Reikšminiai žodžiai: WO3, metalo oksido puslaidininkiai, NOx, dujų jutikliai, zolių-gelių metodas.

Įvadas

Vis didesnį nerimą aplinkosaugininkams kelia oro kokybė Europos miestuose. Nors per pastaruosius dešimtmečius Europoje gerokai sumažėjo daugelio į orą išmetamų teršalų kiekiai ir regione pagerėjo oro kokybė, tačiau oro teršalų koncentracijos vis dar per didelės ir todėl išlieka labai svarbi oro kokybės problema. Deginant organinį kurą šiluminėse elektrinėse, vidaus degimo varikliuose, pramonės ir energetikos įmonėse, individualių gyvenamųjų namų rajonuose susidaro pašalinių degimo produktų (CO₂, NO, NO₂, N₂O, SO₂, lakieji organiniai junginiai ir kt.) (Jarquin-López, Polupan, Toledo-Velazquez ir Lugo-Leyte, 2009; Mane ir kt., 2014).

Kelių transportas išmeta apie pusę azoto oksidų kiekio Europoje. NO₂ dujos kelią grėsmę žmonių sveikatai, kadangi sukelia kvėpavimo funkcijos pažeidimus. Žmonėms, sergantiems astma, padidėjusi azoto dioksido koncentracija gali sukelti dažnesnius priepuolius, o vaikams, turintiems kvėpavimo takų ligų, gali sukelti dusulį (Krikščiūnas ir Dėdelė, 2013; Šidlauskaitė ir Dėdelė, 2015). NO₂ dalyvauja fotocheminio smogo susidarymo reakcijose. Azoto oksidai yra vieni iš svarbiausių rūgščių kritulių sudarymo komponentai. Reaguodami su vandeniu jie sudaro azoto rūgštį. Esant saulės šviesai NO_x reaguoja su kitais aktyviais atmosferos komponentais, dažniausiai angliavandeniliais, ir sudėtingų reakcijų metu sudaro fotocheminius oksidantus (taip pat ir ozoną) (Laurinavičienė ir Januskaitienė, 2008).

NO_x dujoms stebėti ir aptikti esant net mažoms koncentracijoms atmosferoje intensyviai tiriami tokie elektrocheminiai jutikliai, kurių pagrindą sudaro metalų oksidų puslaidininkiai, tokie kaip SnO₂, ZnO, WO₃ (Jie ir kt., 2015).

Jutikliai, kurių pagrindą sudaro metalo oksido puslaidininkiai, dažniausiai naudojami tikslinėms dujoms aptikti vykstant oksidacijos-redukcijos reakcijoms tarp dujų ir metalo oksido paviršiaus.

Elektrocheminių jutiklių tyrimai yra viena svarbiausių tarpdalykinių tyrimų krypčių, jungianti biologijos, medicinos, fizikos ir chemijos mokslus. Elektrocheminiai ir biologiniai jutikliai plačiai naudojami įvairiems tikslams: klinikinei analizei atlikti, patalpų oro kokybei prižiūrėti (norint nustatyti anglies monoksidą), šiltnamio efektą sukeliančioms dujoms stebėti ir t. t. (Liu ir kt., 2012).

Elektrocheminių jutiklių veikimo principas remiasi elektrodo paviršiuje vykstančių cheminių reakcijų, kurios yra tiesiogiai verčiamos į lengvai išmatuojamą elektrinį signalą, registravimu (Grieshaber, MacKenzie, Voro ir Reimhult, 2008).

Elektrocheminių dujų jutiklių, kurių pagrindą sudaro metalo oksido puslaidininkiai, potencialas, naudojamas oro taršos tyrimams, vis labiau vertinamas ir tiriamas dėl kompaktiškumo, efektyvumo, mažų laiko ir finansinių sąnaudų, palyginti su tradiciniais metodais. Pastariesiems papildomai analizei reikalingas mėginių paruošimas, todėl tyrimai užima daugiau laiko ir retai kada gali būti naudojami realiu laiku (Sun ir kt., 2012).

Tarp metalo oksidų puslaidininkių nustatyta, kad būtent WO₃ yra itin selektyvus ir jautriai reaguoja net į mažas NO_x dujų koncentracijas, kadangi W yra pereinamasis metalas, turintis skirtingas oksidacijos būsenas (W5+, W6+), didinančią NO_x molekulių oksidacinę galią į metalo oksido WO₃ paviršių (Kida ir kt., 2014).

Kadangi cheminės reakcijos vyksta jutiklio paviršiuje, tai šio paviršiaus cheminės savybės ir struktūra (metalų oksidų nanokristalų forma, dydis, poringumas, plokštumos orientacija) nanometriniu lygmeniu yra svarbiausias faktorius, lemiantis pagrindines jutiklio charakteristikas. Dėl šios priežasties svarbu ištirti, kaip WO₃ metalo oksido puslaidininkio jautrumą lemia WO₃ jutiklio cheminė sudėtis, kristalinė struktūra ir morfologija (Grieshaber ir kt., 2008; Jie ir kt., 2015).

Lietuvoje oro taršos tyrimams elektrocheminiai jutikliai nebuvo naudoti, tad tai mažai tyrinėta ir nemažai potencialo turinti tyrimo sritis.

Tyrimo tikslas – zolių-gelių metodu, naudojant skirtingus tirpiklius ir priedus, susintetinti WO₃ plonasluoksnes dangas bei teoriškai ir eksperimentiškai įvertinti WO₃ elektrocheminio jutiklio morfologinę ir kristalinę struktūrą, efektyvumą ir panaudojimo potencialą.

Metodika

Volframo trioksido puslaidininkių plokštelės buvo paruoštos zolių-gelių metodu ir padengtos ant stiklo substrato, naudojant pamerkimo ir lašinimo metodus. Volframo trioksido sintezės schema pateikta 1 paveiksle. Natrio volframo dihidratatas (Na₂WO₄ x 2H₂O) buvo ištirpintas distiliuotame vandenyje, į kurį po truputį buvo įlašinta

1 paveikslas. Volframo trioksido sintezės schema

azoto rūgšties (HNO₃), pasiekiant pH < 1 ir nepertraukiamai maišant tirpalą ant magnetinės maišyklės esant 50 °C temperatūrai 4 valandas. Gautas tirpalas buvo filtruojamas ir plaunamas kelis kartus distiliuotu vandeniu, kol buvo pasiektas filtravimo pH ~ 5 ir gautos gelsvos volframo rūgšties nuosėdos (H₂WO₄). Vėliau volframo rūgšties nuosėdos buvo ištirpintos distiliuoto vandens ir vandenilio peroksido (H₂O₂) (5 %) tirpale, nuolat maišant ant magnetinės maišyklės 24 valandas esant 50 °C temperatūrai. Gautas volframo rūgšties tirpalas buvo džiovinamas 12 valandų esant 80 °C temperatūrai, kol buvo gauti geltoni peroksivolframo rūgšties (PVA) milteliai. Galiausiai PVA milteliai buvo ištirpinti vandens ir etanolio tirpale ir gautasis baltos spalvos zolis-gelis buvo išskleistas ant stiklo substrato (10 mm × 20 mm). Kita grupė jutiklių buvo gauta, naudojant tą pačią sintezės metodiką, tik pabaigoje mėginiai buvo ištirpinti vandens, etanolio ir oksalo rūgšties (H₂C₂O₄) (4 proc.) tirpale. Trečioji bandinių grupė buvo paruošta pridėjus polietilenglikolio 300 (PEG 300).

Prieš padengiant stiklo substratą volframo trioksidu, stiklo substratas 15 minučių buvo plaunamas acetonu, etanoliu ir galiausiai distiliuotu vandeniu ultragarsinėje vonelėje (Elma).

Po padengimo procedūros mėginiai buvo kaitinami krosnyje esant 500 °C, 400 °C, 300 °C temperatūrai 2 val. 5 °C/min greičiu.

Siekiant ištirti WO₃ metalo oksido puslaidininkių plokštelės paviršiaus struktūrą, nanokristalų dydį ir formą, buvo naudojami skleidžiančiosios elektrinės mikroskopijos (SEM) ir rentgeno spindulių difrakcijos (XRD) metodai.

Darbe naudotas *Helios NanoLab* skenuojantis elektroninis mikroskopas su X-Max energijos dispersijos spektrometru (*Oxford Instruments*). Mėginių skerspjūviai gauti panaudojus fokusuotų jonų pluošto technologiją. Matuota didesniu nei 99 000x kartų didinimu.

XRD matavimams naudotas rentgeno spindulių difraktometras *SmartLab* (Rigaku, Japonija) su 9 kW rotaciniu Cu anodo rentgeno vamzdeliu.

Elektrocheminės WO₃ jutiklio savybės ištirtos atliekant ciklinės voltamperometrijos bandymus ir WO₃ elektrodo atviros grandinės potencialo atsaką į apšvietimą 0,5 M H₂SO₄ tirpale. Voltamperometrijos matavimai atlikti naudojant trijų elektrodų sistemą, sudarytą iš darbinio elektrodo (katalizinė danga ant fluoro-alavo oksido substrato), lyginamojo RHE elektrodo ir pagalbinio platinos elektrodo. Visų matavimų metu potencialas buvo skleidžiamas anodine kryptimi nuo +0,1 V iki +2,0 V, skleidimo greitis – 50 mV/s. Tirpikliais naudotas 0,5 M H₂SO₄ tirpalas. Tyrimams naudota potenciostatas / galvanostatas AUTOLAB 302 įranga.

Siekiant ištirti WO₃ metalo oksidų puslaidininkių efektyvumą, NO_X dujoms buvo sukonstruota speciali laboratorinė įranga, kurioje buvo tiriamas WO₃ metalo oksido puslaidininkio atsakas, esant skirtingoms NO_X dujų koncentracijoms (10, 20, 30, 40, 50 ppm) bei esant 70 °C jutiklio darbinei veikimo temperatūrai.

Metalo oksido puslaidininkio atsakas į tiriamas dujas buvo apskaičiuotas pagal formulę:

$S(\%) = (R_{oro} - R_{duj_{ij}})/R_{oro} \cdot 100,$

kur R_{oro} ir R_{duju} yra metalo oksido puslaidininkio oro ir tiriamų dujų elektrinis pasipriešinimas (varža) (Mane ir kt., 2014).

Rezultatai ir jų analizė

Yra žinoma, kad metalų oksidų puslaidininkių dujų jautrumo savybės priklauso nuo jų dydžio ir formos (Korotcenkov, 2005).

Dirbant su plonomis dangomis ypač svarbų vaidmenį vaidina dangų paviršiuje vykstantys procesai ir jų pasekmės. Todėl būtina tinkamu masteliu analizuoti bandinių paviršiaus topografiją ir jos kitimą. Šio tyrimo metu pagrindinis paviršiaus topografijos analizės įrankis buvo skenuojantis elektroninis mikroskopas, kuriuo atlikti tyrimo rezultatai pavaizduoti 2 paveiksle.

SEM nuotraukos parodo, kad susintetintų PVA + H₂O + EtOH + 4 % oksalo r. zolių-gelių (400 °C) atveju

2 paveikslas. WO₃ plonasluoksnių dangų, kaitintų 400 °C SEM nuotraukos a) PVA + H₂O + EtOH + PEG 300; b) PVA + H₂O + EtOH + 4 % oksalo r.; c) PVA + H₂O + EtOH

paviršius yra beveik lygus, negalima išskirti pavienių kristalų. Susintetintų PVA + H_2O + EtOH + PEG 300 zoliųgelių (400 °C) atveju pradeda formuotis didesni dalelių aglomeratai, tačiau dalelės yra nevienodo dydžio ir netolygiai pasiskirsčiusios. Šios dangos morfologijai įtakos gali turėti ir naudojamas stiklo substratas. Ryškiausia dangos morfologija stebima PVA + H_2O + EtOH zolių-gelių (400 °C) atveju. WO₃ plokštelės paviršius yra gana tolygiai padengtas sąlygiškai nedideliais, nevienodo dydžio 200– 400 nm WO₃ nanokristalais, kuriems būdinga netaisyklinga vamzdelio forma. Granuliuota morfologija bei gana tolygiai padengtas plokštelės paviršius padeda absorbuoti daugiau bandyminių dujų, kadangi yra labiau veikiamas paviršiaus plotas, kuris pagerina jutimines dujų savybes.

SEM rezultatai parodo, kad WO₃ paviršiaus morfologinė struktūra priklauso nuo zolių-gelių sintezėje naudojamų priedų.

Mažėjantis dalelių dydis, atsirandantis dėl padidėjusių struktūrinių ir elektroninių defektų skaičiaus, turi įtakos medžiagos savybėms, todėl yra tikėtina jautrumo priklausomybė nuo dalelių dydžio (Wang, Yin, Zhang, Xiang ir Gao, 2010).

Remiantis literatūros duomenimis, nustatyta koreliacija tarp nanokristalų dydžio ir metalo oksido puslaidininkių jautrumo, t. y., mažėjant nanokristalų dydžiui, metalo oksidų puslaidininkių jautrumas didėja (Franke, Koplin ir Simon, 2006). 3 paveiksle pateiktos skirtingų plonasluoksnių dangų XRD difraktogramos, gautos nagrinėjant skirtingus zolius-gelius ir taikant skirtingas kaitinimo temperatūras (1 lentelė).

3 paveikslas. Skirtingų WO3 plonasluoksnių dangų XRD difraktogramos

Analizuojant gautus XRD difraktogramų duomenis (3 paveikslas), galima pastebėti, kad naudojant PVA + H_2O + EtOH zolį-gelį (mėginys Nr. 77) ir PVA + H_2O + EtOH + PEG 300 zolį-gelį (mėginys Nr. 70) ir taikant 300 °C kaitinimo temperatūrą, difrakcinės smailės yra neišreikštos, o tai rodo, kad kristalinė struktūra nesusidaro ir dangos yra amorfinės. Įdomūs mėginiai yra Nr. 66 (PVA + H_2O + EtOH + PEG 300 taikant 400 °C) ir Nr. 68 (PVA + H_2O + EtOH + 4 % oksalo r. taikant 300 °C), kuriems yra būdinga amorfinė struktūra, pereinanti į kristalinę struktūrą – tai parodo neryškios difrakcinės smailės 2 Θ – 23,3°, 23,8° ir 24,6°, kurios patvirtina nepilnos kristalinės struktūros formavimąsi. Tai įrodo, kad WO₃ kristalinės struktūros formavimąsi veikia zolių-gelių sintezėje naudojami priedai ir kaitinimo temperatūros.

Nr.	Tirpalas	Temperatūra	Substratas
56.	$PVA + H_2O + EtOH + 4$ % oksalo r.	500 °C 2h (5 °C /min greičiu)	Fluoro-alavo oksidas
57.	$PVA + H_2O + EtOH + 4$ % oksalo r.	500 °C 2h (5 °C /min greičiu)	stiklas
59.	$PVA + H_2O + EtOH$	500 °C 2h (5 °C /min greičiu)	Fluoro-alavo oksidas
60.	$PVA + H_2O + EtOH$	500 °C 2h (5 °C /min greičiu)	stiklas
61.	$PVA + H_2O + EtOH + PEG 300$	500 °C 2h (5 °C /min greičiu)	Fluoro-alavo oksidas
62.	$PVA + H_2O + EtOH + PEG 300$	500 °C 2h (5 °C /min greičiu)	stiklas
64.	$PVA + H_2O + EtOH + 4$ % oksalo r.	400 °C 2h (5 °C /min greičiu)	stiklas
66.	$PVA + H_2O + EtOH + PEG 300$	400 °C 2h (5 °C /min greičiu)	stiklas
68.	$PVA + H_2O + EtOH + 4$ % oksalo r.	300 °C 2h (5 °C /min greičiu)	stiklas
70.	$PVA + H_2O + EtOH + PEG 300$	300 °C 2h (5 °C /min greičiu)	stiklas
74.	$PVA + H_2O + EtOH$	400 °C 2h (5 °C /min greičiu)	stiklas
77.	$PVA + H_2O + EtOH$	300 °C 2h (5 °C /min greičiu)	stiklas
81.	$PVA + H_2O + EtOH$	500 °C 2h (5 °C /min greičiu)	Fluoro-alavo oksidas
82.	$PVA + H_2O + EtOH + 4$ % oksalo r.	500 °C 2h (5 °C /min greičiu)	Fluoro-alavo oksidas
83.	$PVA + H_2O + EtOH + PEG 300$	500 °C 2h (5 °C /min greičiu)	Fluoro-alavo oksidas

1 lentelė. Zolių-gelių sintezė: naudojami tirpikliai, priedai, kaitinimo temperatūra bei substratas

4 paveikslas. WO₃ plonasluoksnių dangų ant fluoro-alavo substrato ciklinės voltamperogramos 0,5 M H₂SO₄ tirpale, potencialo skleidimo greitis – 50 mV/s

Gauti XRD difraktogramų rezultatai parodo, kad naudojant visus tris skirtingus zolius-gelius (PVA + H₂O + EtOH, PVA + H₂O + EtOH + PEG 300, PVA + H₂O + EtOH + 4 % oksalo r.) geriausios kristališkumo dangos gaunamos taikant 500 °C. Akivaizdu, kad mėginiuose stebimos raiškios difrakcijos smailės, esant 2 Θ – 23.13°, 23.56°, 24.33°, 41.67°, 44.38°, 45.74°, 47.24°, 48.35°, 49.89°, 50.62°, 51.83°, 53.63°, 54.25°, 54.88°, 55.86°, kurios priskiriamos monoklininės struktūros WO₃ dangoms, vadovaujantis ICDD 01-083-0950.

Apžvelgus visas difraktogramų tyrimų serijas, galima teigti, kad kaitinimo temperatūra ir zolių-gelių sintezei naudojami priedai veikia WO₃ susidarymą ir kristalinę struktūrą.

4 paveiksle pateikti ciklinės voltamperometrijos matavimų rezultatai. Plonasluoksnės WO₃ dangos, suformuotos ant fluoridu legiruoto alavo oksido (FTO) substrato (mėginiai Nr. 56, 59, 61, 81, 82, 83, 1 lentelė), potenciostato naudojantis *Autolab 302* buvo poliarizuojamos potencialų intervale nuo 0,2 iki + 1,0 V esant 50 mV/s skleidimo greičiui.

Iš pateiktų ciklinių voltamperogramų matyti, kad skleidžiant potencialą į neigiamą pusę ties ~0,5 V katodinė srovė (i < 0) pradeda didėti. Šis srovės augimas atspindi WO₃ redukcijos iki W₂O₅ procesą. Apgręžus potencialo skleidimą ties 0,2 V, matomas anodinės srovės (i > 0) maksimumas, kuris atspindi priešingą reakciją, t. y. susidariusio W₂O₅ oksidacija iki WO₃. Gauti rezultatai patvirtina, kad tiriamos WO₃ plonasluoksnės dangos yra elektrochemiškai aktyvios.

5 paveikslas. WO3 elektrodo atviros grandinės potencialo atsakas į apšvietimą 0,5 M H2SO4 tirpale

Didžiausias srovės tankis stebimas mėg. Nr. 81 ir 82 – o tai reiškia, kad WO₃ plonasluoksnės dangos, susintetintos naudojant PVA + H_2O + EtOH ir PVA + H_2O + EtOH + 4 % oksalo r. zolius-gelius bei padengtos užlašinimo būdu, turi didesnį elektrochemiškai aktyvų paviršiaus plotą.

5 paveiksle pavaizduotas WO₃ elektrodo atviros grandinės potencialo atsakas į apšvietimą 0,5 M H₂SO₄ tirpale. Gauta kreivė yra būdinga n-tipo puslaidininkinėms medžiagoms ir patvirtina, kad WO₃ plonasluoksnės dangos yra elektrochemiškai aktyvios.

6 paveikslas pateiktas WO₃ plonasluoksnių dangų, susintetintų PVA + H_2O + EtOH + 4 % oksalo r. būdu, kaitinant 500 °C, atsako rezultatai į NOx dujas. Gauti rezultatai

6 paveikslas. PVA + H₂O + EtOH + oksalo r. būdu kaitintų 500 °C, WO₃ plonasluoksnių dangų atsako rezultatai į NOx dujas

patvirtina, kad minėtu būdu susintetintos plokštelės reaguoja į NOx dujas ir pagaminto elektrocheminio dujų jutiklio atsakas gerėja didėjant koncentracijai. Esant 50 ppm NOx dujų koncentracijai jutiklio atskas siekia virš 1,6 %.

Lyginant Shim ir kt. su kolegomis susintetintų WO₃ plonasluoksnių dangų, legiruotų Ag, Pd ir Au metalais, stebimi geresni jutiklio atsako rezultatai tiek į NO₂ (5 ppm) dujas, tiek į C₂H₅OH, CH₃COCH₃, H₂ (50 ppm), esant 200 °C darbinei jutiklio veikimo temperatūrai (Shim ir kt., 2014). Jutiklio atsakas į NO₂ dujas viršijo 50 %. Geresnį jutiklių atsaką lėmė dangų legiravimas metalais, todėl siekiant pagerinti jutiklio atsaką į NO_X dujas, plonasluoksnes dangas rekomenduojama tobulinti, legiruojant metalais, tokiais kaip Pd, Pt, Au, Ag.

Išvados

- Zolių-gelių sintezės būdu susintetintų WO₃ plonasluoksnių dangų kristalinė ir morfologinė struktūra priklauso nuo zolių-gelių sintezėje naudojamų priedų bei kaitinimo temperatūros.
- Didžiausio kristališkumo dangos susidarė PVA + H₂O + EtOH, PVA + H₂O + EtOH + PEG 300, PVA + H₂O + EtOH + 4 % oksalo r. zolius-gelius kaitinant 500 °C.
- Ryškiausia dangos morfologija susiformavo sintetinant PVA + H₂O + EtOH zolį-gelį. Šiuo atveju WO₃ plonasluoksnei dangai būdinga granuliuota morfologija. WO₃ plokštelės paviršius yra gana tolygiai padengtas sąlygiškai nedideliais, nevienodo dydžio 200–400 nm WO₃ nanokristalais, kuriems būdinga netaisyklinga vamzdelio forma.
- Didžiausias elektrochemiškai aktyvus paviršiaus plotas yra WO₃ dangų, susintetintų naudojant PVA + H₂O + EtOH ir PVA + H₂O + EtOH + 4 % oksalo r. zolius-gelius ir padengtus užlašinimo būdu.

- 5. Susintetintos dangos yra n-tipo puslaidininkiai.
- 6. Atlikus laboratorinius WO₃ plonasluoksnių dangų atsako į NO_X dujas tyrimus nustatyta, kad PVA + H₂O + EtOH + oksalo rūgštis (kaitinant 500 °C) būdu susintetintos dangos reaguoja į NO_X dujas. Esant 50 ppm NOx dujų koncentracijai, jutiklio atskas siekia virš 1,6 %. Tačiau, siekiant pagerinti WO₃ elektrocheminio dujų jutiklio atsaką, jo selektyvumą tiriamosioms dujoms bei potencialą NO_X dujų nustatymui, rekomenduojama atlikti tolesnius WO₃ plonasluoksnių dangų tyrimus, tobulinant bei legiruojant dangas metalais, tokiais kaip Pd, Pt ir Au.

Literatūra

- Franke, M. E., Koplin, T. J., Simon, U. (2006). Metal and metal oxide nanoparticles in chemiresistors: Does the nanoscale matter?. *Small*, 2(3), 293-431. https://doi.org/10.1002/smll.200690010
- Grieshaber, D., MacKenzie, R., Voro, J., & Reimhult, E. (2008). Elektrochemical Biosensors-Sensor principles and architectures. *Sensors* (Basel), 8(3), 1400-1458. https://doi.org/10.3390/s80314000
- Jarquin-López, G., Polupan, G., Toledo-Velazquez, M., & Lugo-Leyte, R. (2009). Analytical and experimental research for decreasing nitrogen oxides emissions. *Applied Thermal Engineering*, 29(8-9), 1614-1621. https://doi.org/10.1016/j.applthermaleng.2008.07.022
- Jie, X., Zeng, D., Zhang, J., Xu, K., Wu, J., Zhu, B., & Xie, Ch. (2015). Graphene-wrapped WO₃ nanospheres with roomtemperature NO₂ sensing induced by interface charge transfer. Sensors and Actuators, 220, 201-209. https://doi.org/10.1016/j.snb.2015.05.047
- Kida, T., Nishiyama, A., Hua, Z., Suematsu, K., Yuasa, M., & Shimanoe, K. (2014). WO₃ nanolamella gas sensor: Porosity control using SnO₂ nanoparticles for enhanced NO₂ sensing. *Langmuir*, 30(9), 2571-2579. https://doi.org/10.1021/la4049105
- Korotcenkov, G. (2005). Gas response control through structural and chemical modification of metal oxide. Sensors and Actuators B: Chemical, 107(1), 209-232. https://doi.org/10.1016/j.snb.2004.10.006
- Kriščiūnas, B. ir Dėdelė, A. (2013). Aplinkos inžinerija: Mokomoji knyga. Kaunas: VDU.
- Laurinavičienė, D. ir Januskaitienė, I. (2008). Nitrogen dioxide concentrations in Kaunas 2008–2009. Enviromental Engineering, 178-181.
- Liu, X., Cheng, S., Liu, H., Hu, S., Zhang, D., & Ning, H. (2012). A survey on gas sensing technology. *Sensors*, *12*(7), 9636-9664. https://doi.org/10.3390/s120709635
- Mane, A. T., Kulkarni, S. B., Navale, S. T., Ghanwat, A. A., Shinde, N. M., Kim, J., & Patil, V. B. (2014). NO₂ sensing properties of nanostructured tungsten oxide thin films. *Ceramics International*, 40(10, Part B), 16495-16502. https://doi.org/10.1016/j.ceramint.2014.08.001
- Shim, Y. S., Zhang, L., Kim, D. H., Kim, Y. H., Choi, Y. R., Nahm, S. H., ..., & Jang, H. W. (2014). Higly sensitive and selective H₂ and NO₂ gas sensors based on surface-decorated WO₃ naniogloos. *Sensors and Actuators B: Chemical*, 198, 294-301. https://doi.org/10.1016/j.snb.2014.03.073

- Šidlauskaitė, G. ir Dėdelė, A. (2015). Azoto dioksido nustatymas naudojant ADMS-Urban modelį Kėdainių mieste. *Žmogaus ir gamtos sauga*, 105-107.
- Sun, Y.-F., Liu, S.-B., Meng, F.-L., Liu, J.-Y., Jin, Z., Kong L.-T., & Liu, J.-H. (2012). Metal oxide nanostructures and their gas sensing properties: A review. *Sensors*, 12(3), 2610-2631. https://doi.org/10.3390/s120302610
- Wang, C., Yin, L., Zhang, L., Xiang, D., & Gao, R. (2010). Metal oxide gas sensors: sensitivity and influencing factors. *Sensors* (Basel), *10*(3), 2088-2106. https://doi.org/10.3390/s100302088

INVESTIGATION AND EVALUATION OF ELECTROCHEMICAL SENSOR WITH TUNGSTEN TRIOXIDE FOR AIR QUALITY MONITORING

L. Rezgytė, A. Zagorskis, M. Petrulevičienė, J. Juodkazytė, B. Šebeka, I. Savickaja, V. Pakštas, A. Naujokaitis

Summary

The potential of metal oxide gas sensors is increasingly appreciated and studied because of their advantages such as compact size, efficiency, low time and financial cost. In this work tungsten oxide thin films (WO3) where synthesized on glass substrate using sol-gel approach with different additives and 500 °C, 400 °C, 300 °C annealing temperatures. The crystalline and morphological structure, porosity and size of nanocrystals of WO3 thin film were characterized using X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM). Electrochemical characteristics of the WO3 sensor were investigated by cyclic voltammetry and WO3 electrode open circuit potential response to light in 0.5M H₂SO₄ solution. It was found that the crystalline and morphological structure of WO3 thin films depends on the additives used in the synthesis of sol-gels and on the annealing temperatures. The highest crystaline phases of tungsten oxide were obtained soles-gels annealing by 500 °C. Experimental results indicated that the WO₃ films synthesized using $PTA + H_2O + 4\%$ oxalic acid, annealed at 500 °C response to NOx gasses. The sensor response depends on NOx concentration: the impedance increases as NOx concentration increases from 0 to 50 ppm.

Keywords: WO₃, metal oxide, NO_x, gas sensor, sol-gel method.